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Cidade Universitária, CEP 05508-900 - São Paulo, SP, Brazil

Emails: ricardo.shirota@poli.usp.br, fgcozman@usp.br

Abstract— This paper explores a recently defined generalization of Markov Decision Processes called Markov
Decision Processes with Set-valued Transitions (MDPST). We apply MDPSTs to the analysis of a well-known
model for bus engine replacement based on MDPs. While MDPs are already extensively employed for automation
and control, the discussion in this paper suggests that MDPSTs can have even broader applicability, as MDPSTs
benefit from the ability to represent lack of probabilistic precision.
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Resumo— Este artigo explora uma generalização de Processos de Decisão Markovianos chamada Processos de
Decisão Markovianos com Transições de Conjuntos (MDPSTs). Aplicamos MDPSTs à análise de um modelo
bastante conhecido baseado em MDPs para substituição de motores de ônibus. Enquanto MDPs são exten-
sivamente aplicados em controle e automação, a discussão neste artigo sugere que MDPSTs podem ter maior
aplicabilidade, pois estes possuem habilidade de representar imprecisão em valores de probabilidade.

Keywords— Processo de Decisão Markoviano, Automação de Tomada de Decisão, Substituição de Motores
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1 Introduction

Markov Decision Processes (MDPs) have a long
and respectful history in Operations Research.
Adopted as models for solving sequential decision
problems, they have been applied to many situ-
ations, such as inventory management, produc-
tion planning, layout design and maintenance and
replacement problems. Research in control engi-
neering applies the MDP formulation to stochas-
tic modeling, making it an ideal framework for
many problems in automation. Recent work by
(Boutilier et al., 1999) has shown how MDPs pro-
vide an excellent formulation for planning prob-
lems, opening new frontiers for their use as a deci-
sion tool. Furthermore, many advances have been
achieved in the last few decades in both applied
and theoretical fronts on MDPs, leading to appli-
cations in areas such as ecology, economics and
communication engineering (Puterman, 1994). In
the majority of these applications, the main tool
to find optimal decisions in MDPs is dynamic pro-
gramming (Russell and Norvig, 1995).

Early applications of MDPs involve inventory
management and maintenance and replacement
problems (Puterman, 1994). In this paper we dis-
cuss a well-known model formulated by John Rust
on bus engine replacement, based on years of data
from Harold Zurcher, superintendent of mainte-
nance at the Madison Metropolitan Bus Com-
pany (Rust, 1987). We intend to examine some
of the limitations of the MDP-based formulation,
and to examine the benefits of applying a formu-
lation based on Markov Decision Processes with
Set-valued Transitions (MDPSTs). Rust’s formu-

lation for Zurcher’s behavior provides for a nice
case study, due to its simple state and transition
probability model.

As mentioned, Rust adopts the MDP formu-
lation in order to obtain a model that describes
the behavior of Zurcher’s decisions on bus en-
gine replacement. The hypothesis is that his be-
havior can be described as a simple regenerative
optimal stopping model, with Zurcher’s decisions
coinciding with an optimal stopping rule. Due
to his background as an economist, Rust uses a
bottom-up approach to model the replacement in-
vestment along with ten years of monthly data on
bus mileage and engine replacements. He seeks
an estimate for the unknown primitive parame-
ters which specify Zurcher’s expectations of the
future value of the state variables, the expected
costs of regular bus maintenance, and his percep-
tions of the customer goodwill costs of unexpected
failures. These estimates are then used to test the
consistency of Zurcher’s behavior with the model.

However, Rust did not have tools and suf-
ficient data to consider all the details inherent
to the problem. This forced him to simplify his
model and to make additional assumptions in or-
der to obtain a solution. In this paper, we take
Rust’s original problem as a case study and ask:
would MDPSTs be a suitable tool to capture all
relevant aspects of Zurcker’s behavior? The idea
here is to focus on whether MDPSTs would, in
principle, offer a more adequate framework for
knowledge representation in this problem. We
specifically question whether we need to assume,
as Rust does, that precise transition probabilities
must be employed for all actions and states.



In the next section, we provide a brief re-
view of the model formulated in (Rust, 1987),
along with an introduction to the MDP/MDPST
model. Section 3 discusses the model built by
Rust and the possible advantages of adopting an
MDPST model. Finally, Section 4 provides a gen-
eral overview and final comments on this work.

2 Background

This section presents a brief review of the litera-
ture on MDPs and the recently proposed MDP-
STs (the latter based on work by (Trevizan et al.,
2007)), and of the empirical model proposed by
(Rust, 1987).

2.1 MDPs

Markov Decision Processes (MDPs) are used in
many fields to encode possibly infinite sequences
of decisions under uncertainty. For historical re-
view, basic technical development, and substantial
reference to related literature, the reader may con-
sult books by (Puterman, 1994) and (Bertsekas,
1995). The following paragraphs present the
general MDP formulation, consistent with that
adopted in (Rust, 1987).

In general, MDPs are described by:

• a set T of stages; a decision is made at each
stage.

• a set S of states.

• a set of actions A; the set of actions may be
indexed by states.

• a conditional probability distribution Pt that
specifies the probability of transition from
state s to state r given action a at stage t.

• a reward function Rt that indicates how much
is gained (or lost, by using a negative value)
when action a is selected in state s at stage t.

The state obtained at stage t, in a particular real-
ization of the process, is referred to as st; likewise,
the action selected at stage t is referred to as at.

The history ht of an MDP at stage t is the
sequence of states and actions visited by the pro-
cess, [s1, a1, . . . , at−1, st]. The Markov assumption
that is adopted for MDPs is that P (st|ht−1, at) =
P (st|st−1, at); consequently:

P (ht|s1) = P (st|st−1, at−1) P (st−1|st−2, at−2)

. . . × P (s3|s2, a2) P (s2|s1, a1) . (1)

A decision rule dt indicates the action that is
to be taken in state s at stage t. A policy π is a se-
quence of decision rules, one for each stage. A pol-
icy may be deterministic or randomized; that is,
it may prescribe actions with certainty, or rather
it may just prescribe a probability distribution

over the actions. A policy may also be history-
dependent or not; that is, it may depend on all
states and actions visited in previous stages, or
just on the current state. A policy that is not
history-dependent is called Markovian. A Marko-
vian policy induces a probability distribution over
histories through Expression (1).

It can also be assumed that an MDP with
infinite horizon (that is, with infinite T ) may al-
ways stop with some probability. In fact, in many
cases it is assumed that the process stops with ge-
ometric probability: the process stops at stage t
with probability (1− γ)γt−1 (independently of all
other aspects of the process). Then γ is called the
discount factor of the MDP (Puterman, 1994, p.
125).

The evaluation of a policy π in an MDP can
be given by its expected reward:

Vπ(s) = Es,π

[

ET

[

T
∑

t=1

R(st, at)

]]

; (2)

that is, the expectation of the expected reward
assuming the process stops at stage T . Now if the
process has a geometric probability of stopping at
T , with parameter γ, we have (Puterman, 1994,
p. 125):

Vπ,γ(s) = Es,π

[

∞
∑

t=1

γt−1R(st, at)

]

. (3)

We refer to Vπ,γ(s) as the expected total dis-
counted reward. There are other criteria to eval-
uate policies in MDPs; for example, the expected
total reward Es,π[

∑∞

t=1 R(st, at)], and the av-

erage reward limT→∞(1/T )Es,π

[

∑T
t=1 R(st, at)

]

(Bertsekas, 1995; Puterman, 1994). These crite-
ria may be useful in specific problems but they
are usually less realistic than Expression (2) and
the associated discounted reward (3). We focus
on the latter in this paper.

Additional realism and flexibility can be at-
tached to MDPs by allowing imprecision and in-
determinacy in the assessment of transition prob-
abilities. A decision process with states, actions,
stages and rewards as described before, but where
a set of probability distributions is associated with
each transition, has been called a Markov De-
cision Process with Imprecise Probabilities (MD-
PIP) by White III and Eldeib (White III and El-
Deib, 1994). Satia and Lave Jr. use instead the
name MDP with Uncertain Transition Probabili-
ties (Satia and Lave Jr., 1970), in what may be the
first thorough analysis of this model in the liter-
ature; Harmanec uses the term generalized MDP
to refer to MDPIPs (Harmanec, 2002).

MDPIPs can represent incomplete and am-
biguous beliefs about transitions between states;
conflicting assessments by a group of experts; and



situations where one wishes to investigate the ef-
fect of perturbations in a “base” model. MDPIPs
have also been investigated as representations for
abstracted processes, where details about transi-
tion probabilities are replaced by an enveloping
set of distributions (Givan et al., 2000; Ha and
Haddawy, 1996). Similar models are encoded by
the controlled Markov set-chains by Kurano et
al. (Kurano et al., 1998; Hosaka et al., 2002).
Slightly less related are the vector-valued MDPs
by Wakuta (Wakuta, 1995). Some of these efforts
have also adopted interval-valued rewards; in this
paper it is focused on imprecision/indeterminacy
only in transition probabilities.

2.2 MDPSTs

(Trevizan et al., 2007) proposed a new class of
MDPIPs pursuing important applications in the
field of artificial intelligence planning. As we will
suggest in the following section, this class is also
useful for applications in classical MDP problems
when there are unobservable variables or unknown
or ambiguous data, as in the maintenance and re-
placement problem here considered.

The general formulation is similar to that ob-
served for classical MDPs. Following the notation
adopted in Section 2.1, an MDPST is also com-
posed by a set of stages T , a set of states S, a set
of actions A and a reward function R. However,
the state transition function F (s, a) maps states
s ∈ S and actions a ∈ A into reachable subsets of
S, i.e., into nonempty subsets of S, and a set of
mass assignments m(k|s, a) for all s ∈ S, a ∈ A,
and k ∈ F (s, a). In MDPSTs the optimal policy
induces a value function that is the unique solu-
tion of (Trevizan et al., 2007):

V ∗(s) = max
a∈A



R(s, a) +

+γ
∑

k∈F (s,a)

m(k|s, a)min
r∈k

V ∗(r)



 .(4)

In this case we adopt the Γ-maximin criterion for
the evaluation of policies. This means we select
the policy that yields the largest value of min
V ∗(s), where the minimum applies to all transi-
tion probabilities. Other well studied criteria are
Γ-maximax, E-admissibility and maximality.

Many known algorithms are available for
MDPSTs. In fact, every algorithm for MDPIP
can be directly applied to MDPSTs (Trevizan
et al., 2007). The currently known algorithms
include value iteration, policy iteration, modified
policy iteration, Harmanec’s interval dominance
algorithm (Harmanec, 2002) and different variants
of mathematical programming.

2.3 The empirical model of Harold Zurcher

As the superintendent of maintenance at the
Madison Metropolitan Bus Company, Harold
Zurcher had the responsibility of keeping the com-
pany’s bus fleet in an acceptable operational con-
dition. Zurcher classified the necessary mainte-
nance (to keep the fleet in order) in three cate-
gories (1. routine, periodic maintenance, 2. re-
placement or repair of individual components at
time of failure and 3. major engine overhaul
and/or replacement), however Rust focuses only
on the third component of investment.

In this approach, Zurcher must decide
whether it is cost-efficient to simply replace or
repair a failed bus engine component, or engage
a full engine replacement. On a bus with a rel-
atively low mileage, it is reasonable to proceed
with a minimal maintenance procedure, substitut-
ing just the damaged component. However, in a
bus with relatively high mileage it is expected that
other components will shortly fail, making sense
to replace the entire engine.

John Rust initially formulates Harold
Zurcher’s behavior as a simple regenerative op-
timal stopping model of bus engine replacement.
Using a bottom-up approach he derives a joint
stochastic process {at, st} to explain the bus data,
where at = 1 if a replacement occurs at time t
and at = 0 otherwise, and st denotes observed
state variables associated with the replacement
investment decision. Bus data provided by
Zurcher consists of “[...]monthly observations on
the mileage (odometer reading) on each bus,
plus a maintenance diary which records the
date, mileage and list of components repaired or
replaced each time a bus visits the company shop”
(Rust, 1987, p. 999). Hence the decisions are
made monthly, and state variables st represent
the accumulated mileage since replacement.

Rust proposes a decomposition of the cost
function as follows:

c(s, θ1) = m(s, θ11) + µ(s, θ12)b(s, θ13), (5)

where m(s, θ11) is the conditional expectation
of regular maintenance and operating expenses
(maintenance, fuel and insurance costs), µ(s, θ12)
is the conditional probability of unexpected engine
failures, b(s, θ13) is the conditional expectation of
towing costs, repair costs and the perceived dollar
cost of lost customer goodwill in the event of an
unexpected engine failure, and θ1 = (θ11, θ12, θ13)
is the unobservable variables associated to the cost
function. However, the absence of specific data on
maintenance and operating cost or on the occur-
rence of unexpected breakdowns made it impossi-
ble to estimate m, µ and b separately, forcing Rust
to use a generic estimate of the sum, c.

The cost function is used to determine the



utility function:

u(st, at, θ1) =

{

−c(st, θ1) if at = 0,
−[P − P + c(0, θ1)] if at = 1.

(6)
This function models the property that if the de-
cision to keep the current engine is made (at = 0),
the system incurs only the expected operating cost
c(st, θ1). If, on the other hand, it is decided that
the engine should be replaced, then the old bus
engine is cannibalized for scrap value P , a new or
rebuild engine is installed at cost P and incurs the
operating cost c(0, θ1). The utility function is then
used to determine the value function Vθ which is
the unique solution to Bellman’s equation:

Vopt(s) = max
a∈A

(

R(s, a)+γ
∑

r

p(r|s, a)Vopt(r)

)

.

(7)
Rust proves that under certain conditions there
is an optimal stationary Markovian replacement
policy (Rust, 1985):

at =

{

1 if st > ρ(θ1, θ2),
0 if st ≤ ρ(θ1, θ2),

(8)

in which the constant ρ represents a threshold
value of mileage (optimal stopping barrier) such
that whenever current mileage on the bus st ex-
ceeds ρ, it is optimal to incur the replacement
costs RC = (P−P ) and replace the old bus engine
with a new one (Rust, 1987).

3 A modified model for bus engine

replacement

Rust provides a simple model for bus engine re-
placement. This model was shown to be statis-
tically consistent with the replacement data pro-
vided by Zurcher, however this result should be in-
terpreted with caution. In this section, we present
and discuss some aspects of the model for which
assumptions have been made, but not enough sup-
port provided.

We begin our discussion by the assumption
that the transition probabilities have a functional
form. Rust attempts to prove this by running ad-
herence tests of the selected distributions on the
available data (the replacement data) in order to
check their consistency. This procedure has two
outcomes, it can accept the adherence of the dis-
tribution to the data, or it can reject it. Of the
8 particular parametric functional forms tested,
none were rejected, leading us to conclude that
any one of them could equally represent the data.
Nevertheless, Rust insists on selecting one specific
functional form. He then uses “more intuitive cri-
teria in order to select a ‘best fit’ model from the
array of alternative functional forms” (Rust, 1987,
p. 1020). This was achieved by obtaining a ‘com-
promise’ between choosing the functional form

with highest likelihood value and choosing a ‘par-
simonious’ one, yet consistent with his priors and
other non-quantitative information about the re-
placement model. What is not explained is how
this ‘compromise’ is composed, and what is con-
sidered to be a ‘parsimonious’ functional form.

While the exact criterion used to select
the transition probability distribution is not ex-
plained, we can try to understand why Rust
adopted this procedure. MDPIPs are known since
early 1970s, hence available when Zurcher’s bus
engine replacement model was formulated. But
it was only recently that MDPIPs began to re-
ceive its deserved attention. If used as the base
model for the formulation of this model, it would
have not been necessary to assume a functional
form for the transition probabilities, given that
MDPIPs allow indeterminacy in their assessment.
This way, Rust was left with the classical MDP
formulation and forced to use precise probability
assignments. Since the data flatly refuted a pre-
cise value for the transition probabilities, he was
forced to obtain a distribution consistent with the
data in order to build a model. This does not,
however, justify the use of one specific functional
form in preference of the remaining tested forms,
given that they were all considered adherent to the
data by the likelihood ratio test. This makes MD-
PIP/MDPST the ideal choice for modeling this
situation, given that the model builder does not
have to make random suppositions about the func-
tional form of the transition probabilities.

Another assumption made by Rust is the
proposition that the system states can be mod-
eled solely based on the accumulated mileage. It
is perhaps too simplistic to assume that the en-
gine condition is influenced only by the odometer
reading. Many other variables can be shown to af-
fect the condition of the engine, like maintenance
history, fuel and air quality and even subjective
quantities like bus driver attitude (driving aggres-
siveness). Rust was not unaware of this problem,
but did not formulate a more realistic model since
he could not obtain a solution for it.

We observe two main difficulties in adding
these additional parameters to model the system
states. The first one, which was also mentioned by
Rust, is the unavailability of the necessary infor-
mation about these extra parameters. As noted
in (Rust, 1987), the data provided by Zurcher
consisted only on monthly observations on the
mileage on the bus odometer, plus a maintenance
diary containing records on date, mileage and list
of components repaired or replaced each time the
bus visited the company shop. No other informa-
tion was available. Hence, Rust was unable to add
these extra parameters, since he could not model
them. Nevertheless, they continue to be impor-
tant in the description of the engine’s condition,
and should be included (possibly as unobservable



parameters) in order to obtain a more realistic
model.

The second problem for increasing the details
of the state space model is the fact that each new
state variable increases the size of the space. This
increases proportionally the time needed to obtain
an optimal solution (i.e. policy iteration is O(n3),
which means that solution is obtained in time pro-
portional to the third power of the state space
size). Advances in the last few decades have made
it possible for researchers to solve problems much
more complex than those computed by Rust, al-
lowing us to incorporate these additional details.
Not only has computer technology improved, but
new algorithms have also been proposed, leading
to faster solutions. It can also be mentioned the
formulation of strategies for state space reduction,
like the factored representation briefly commented
in (Boutilier et al., 1999).

When considering the above mentioned obser-
vations, the classical MDP framework is no longer
suitable. Instead, the MDPST1 framework is a
better option. In order to overcome the limita-
tions imposed by the MDP framework, the tech-
nical aspects of the possible MDPST formulation
is presented in the following paragraphs.

In a general manner the difference in between
the MDP and the MDPST model relies on the
state transition function and the probability as-
signments. This will provide the necessary tools
to incorporate improvements to solve both prob-
lems appointed in the beginning of this section.

Recalling Section 2.2, which introduced the
concept of MDPST, the state transition func-
tion F (s, a) maps states s and actions a into
nonempty subsets of S, and a set of mass assign-
ments m(k|s, a) for all s, a ∈ A and k ∈ F (s, a).
This formulation allows us to elaborate a model in
which the questioned assumptions are no longer
necessary:

- Transition probability: In MDPSTs, the
transition probabilities are given by a set of
mass assignments. This allows one to model
uncertainty in the transition probabilities. It
is achieved by enumerating constraints on
mass assignments, and the probabilities can
be any value which respects these constraints.
In this specific example, each mass assign-
ment could be given by an upper and a lower
probability value, representing the maximum
and the minimum expected probability of
transition from one certain state to another.

- State transition function: In MDPs, the
state transition function maps states and ac-
tions into states. In a different manner, in

1Since MDPSTs are a class of MDPIPs, this can also be
done using the latter. However, MDPIPs are considerably
more complicated and, in this case, do not provide addi-
tional benefits (when compared to MDPSTs), the reason
why we have chosen to adopt the MDPST formulation.

MDPSTs the state transition function maps
states and actions into nonempty subsets of
S. This means that a transition from a state,
given a feasible action, can be mapped into
a set of states, instead of only one specific
state (although the set can be singleton, in
which case it becomes identical to the classi-
cal MDP). This allows one to add unobserv-
able or unknown state variables, with transi-
tions being mapped into the set of all states
with values applicable to these variables.

Many classical algorithms for solving MDPs
are able to compute solutions for MDPSTs, as
seen in Section 2.2. (Trevizan et al., 2007) shows
that any algorithm used to compute optimal poli-
cies for MDPIPs can be applied to MDPST.
This includes well known policy and value iter-
ation, along as variations of mathematical pro-
grams (multilinear and integer programs).

4 Conclusion

The analysis provided by Rust in his paper about
Harold Zurcher’s bus engine replacement model is
interesting but still incomplete. Despite statisti-
cally consistent with the replacement data avail-
able on the bus fleet, Rust’s formulation may not
represent the actual engine failure process as one
would like.

In order to implement an update and an im-
provement of this model, we have suggested an
MDPST formulation (Trevizan et al., 2007). This
not only allows one to include unobservable or
unknown parameters (as imprecision on the tran-
sition of state variables), but also the imprecise
probabilities associated with ambiguous or incom-
plete data. Trevizan et al. initially formulated the
model for use in AI planning problems, nonethe-
less it can be applied to classical MDP problems,
when these problems involve unobservabilities or
incompleteness of data.

However, even this MDPST formulation of
Zurcher’s bus engine replacement model is not
complete. Other aspects can also be improved,
which were not considered in our proposed model.
Rust, for example, comments on his doubts about
the optimal stationary policy adopted in his pa-
per. The data shows that engine replacement was
conducted from a minimum of 82,400 to a max-
imum of 387,300 miles, a variance too large to
be consistent with the adopted optimal thresh-
old replacement policy. On a preliminary research
on this issue, it was found that in some cases of
MDPs (as in constrained MDP, where additional
constraints are defined on the value function), it is
common not to obtain a pure policy as an optimal
solution (Puterman, 1994). In these cases a mixed
strategy is the usual outcome. If this constrained
model could be proved to correctly represent this



replacement model, a mixed strategy can explain
such a large variance. However, it should also be
examined whether Zurcher actually performs op-
timally (thus if the threshould replacement policy
is really not optimal).

The cost function adopted by Rust was a
rough estimate. Their functional form was also
used to represent the possible cost values; again
no proofs were presented to show that this is true.
Work by (Wakuta, 1995), (Kurano et al., 1998)
and (Hosaka et al., 2002) provide different classes
of MDPs which are focused on imprecision on the
reward function, and could possibly be applied to
this situation.

Finally, it must be noticed that there are dif-
ferent approaches to maintenance problems, i.e.
work by Jayakumar and Asgarpoor (Jayakumar
and Asgarpoor, 2004; Jayakumar and Asgarpoor,
2006). In this work, states represent levels of
deterioration and actions include different levels
of maintenance. Costs and rewards are given to
maintenance level selected and condition of equip-
ment respectfully, and the goal is to obtain the
most cost-efficient maintenance level to be carried
out at each deterioration level.
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